
Mantle Convection on GPU Using 
the Rayleigh-Benard Paradigm



Contributors
David A. Sanchez

Greg A. Barnett

Dr. Dave Yuen

Dr. Grady Wright

MN Supercomputing Inst.,
University of Minnesota,
Minneapolis MN,  USA

Dept. of Applied Math,
University of CO, Boulder
Boulder CO,  USA

MN Supercomputing Inst.,
University of Minnesota,
Minneapolis MN,  USA

Dept. of Math,
Boise State University,
Boise Idaho,  USA

Chris Gonzalez
Department of Geology,
University of Minnesota,
Minneapolis MN,  USA



Introduction

Although considered over-hyped by many 
scientists, the price, performance, and ubiquity 
of GPU have contributed to its status as the 
rising star in the computational world. 
However, the generality of this performance is 
doubted by many and must be verified. Also 
notably, the areas in which prejudice would 
typically assert the dominance of GPU must be 
thoroughly investigated. To that end we 

playground linear algebra. 



Preview

We implemented 2D and 3D Rayleigh-Benard 
convection on GPU by utilizing a 2nd-order 
finite difference method.
On a single Tesla C2070:

In single precision, we hit 535 GFLOP/s for 2D
In single precision, we hit 100 GFLOP/s for 3D



Outline

Model
Implementation
Performance
Analysis



Model: Assumptions

We fix for all time Ttop = 0, Tbottom = 1
We take the limit of the Prandtl # to infinity

Ignore effects of thermal diffusion
We assume the Boussinesq approximation

Ignore density variations, except bouyancy
Freeslip sides

Velocities normal to sides are zero at sides
Uniform, Cartesian geometry
Fluid has constant viscosity



Model: Variables

Rayleigh Number (Ra)
Describes how heat is transported within the fluid
Higher Ra promotes more vigorous convection
Such convection requires greater numerical 
accuracy
2D max tested 6x1010

3D max tested 107



Model: Variables

Aspect ratio
2D tested:  1:1, 1:2, 1:3
3D tested:  1:1:1, 1:2:2, 1:3:3
Greatly influences convective behavior
For fixed Ra, varying aspect ratio can throw the 
system from equilibrium into chaos



Model: Variables

Precision
Single
Double

This is usually held fixed for a given model, but 
we briefly examine effects due to change of 
precision

Some of these effects are difficult to predict a priori



Model:  2D Pictorial Model



Model:  3D Pictorial Model



Model: Application

Generically, Rayleigh-Benard convection is a 
simple model describing the behavior of a 
basally heated fluid
This model has applications to fluid mechanics

This is an often-encountered system
Plenty of benchmarks
Plenty of prior work

Not quite a passable model for the contemporary 

More suitable for magma oceans



Model: Equations

Energy:

Momentum:

Stated in this way, velocity looks like:



Model: Numerical

Domain spatially discretized via method of lines
Using a 2nd order finite-difference scheme

Timestepping is with Runge-Kutta 3
Allows for much-needed variable timestepping

Domain-wide, convective velocity is non-uniform
Duration-wide, convective velocity is non-uniform

Additionally, must solve momentum equations 3x 
per timestep



Model:  Architectural Concerns

different types of problems than conventional 
ones
CPU implementations might perform miserably 
on an exact problem, but may be able to 
perform better on a lower-FLOP algorithm 
which progresses more rapidly
Generically, machine-to-machine benchmarks 
must take on qualitative properties if these 
concerns are to be addressed (though the 
victor is often still obvious)



Model:  Architectural Concerns II
Despite what was said in the previous slide, 
exposing underlying architectural differences is 
much easier beginning from congruent 
algorithms
The search for better algorithms is motivated 
by understanding what is wrong with 
implemented ones, so these differences are 
important to identify

should they might be a lot of work



Model: Solution

The next slide is of a computational flowchart 
for the 3D solution, although the 2D solution 
follows closely
1 and 2 in the next slide are the coupled 
Poisson equations we will discuss shortly, once 
these are solved, velocity can be found easily 
and used to update the array



Model:  Computational Flowchart



Outline

Model
Implementation
Performance
Analysis



Implementation:  Poisson Eqns

We have coupled Poisson equations, which 
require a suitable solution
Generically, this should be done with 
something like a DFT (often an FFT-based 
method)



Implementation

We tested methods for solving 
Within our scale, A is fastest not FFT-based
Computationally, swap FFT for GEMM

FCT and FST above are based on FFT
Sensitive results need constant supervision:

Is this faster in CUDA 3.2 with BLAS speedup?

Faster heterogeneously (CPU+GPU with MAGMA)?



Implementation

To do everything in the flowchart from before, 
we need only a small repertoire of operations

Scalar-matrix multiplication
Matrix-matrix addition
These matrices come from the xy, xz, and yz 
sheets of the 3D array

above
Finally, we need matrix-matrix multiply



Implementation

Computationally, the various sheets in the 
array look like strided vectors of some variety, 
so the only BLAS routines we need are:

axpy (y= x+y)
scal  (x= x)
gemm  (C = AB + C)

CUBLAS could accommodate this need
So could MAGMA, which uses CUBLAS and a 
CPU-BLAS for CPU-GPU computing (not 
discussed in this talk)



Implementation:  GPU concerns

problem size!
This is especially easy to do when utilizing 
high-level abstractions, such as BLAS 
packages

performance



Implementation: example

As a part of the finite-difference stencil, we 
iterate through the xy-sheets Ai of the array.  
We want to make a new array whose interior 
xy-sheets Bi = Ai-1 + Ai+1

i = Ai-1 + Ai+1

But if we think of Ai as a vector vi with a given 
stride k AND the concatenation v1 ,v2 , ,vn
also has stride k, we gain from doing the entire 
operation at once, on the concatenation of 
vectors, rather than iteratively through the list 
of vectors



Implementation: Considerations

Because global memory transactions are so 

quantities every time they are needed
For example, our GEMM takes a temperature 
array and a fixed array as input.  We could 
improve performance by determining the 
elements of this array on every timestep 
instead of pulling it from memory



Implementation: Caveats

The GPU software landscape is changing 
rapidly

Accordingly, benchmark landscape changes too
MAGMA 1.0 was released on Dec 9th

CUDA 3.2 improved our runtime by a factor of two
On Fermi

This is just a part of life at the cutting edge
After a few years hopefully either,

Better support (providing this is our job)
New hardware to work with



Outline

Model
Implementation
Performance
Analysis



Performance: 2D Single Precision

All results Tesla C2070
For the problems it could accommodate, faster 2D 
performance on the GTX 480 tiny global memory 
heavily restricted the domain size

Max 535 GFLOP/s for full code
Computing, iterating, and saving
Close to SGEMM limit on C2070

Min 0.14 us/timestep gridpoint



Performance: 2D Double

Max 270 GFLOP/s for full code
Given that only smaller problems can be 
tackled in double precision, performance 

Due to more efficient memory pipelining



Performance:  2D Remarks

Predictably, square matrices out-performed 
non-square matrices with comparable number 
of elements
Non-monotonic performance profile exposes 
scaling irregularities.  This is due to GPU 
processor use during GEMM on non-optimal 
matrix dimensions, many computing agents are 
completely idle
The next slide showcases this visually check 
out the regularity of peaks and valleys!





Performance: 3D Single Precision

Reaches 100 GFLOP/s for 1:1:1
Reaches 85 GFLOP/s for 1:3:3
Why is this so low?  The matrix-matrix 
multiplies are maximally 450x450 matrices, 
which does not allow sufficient saturation of 
GPU computing elements
How does the aspect ratio interact?  By 
increasing the size of the matrices, but also 
significantly increasing the proportion of less-
efficient, non-GEMM operations



Performance: 3D remarks

Although dominated by matrix-matrix multiplies 
(as is 2D) performance is much worse.  Why is 
that?
Each GEMM is on much, much smaller 
matrices for single precision, 450x450 vs 
2000x2000.  When the 2D matrices are also 
taken down to this scale, the performance is 
comparable.
Excellent candidate for upscaling to 360 GPU



Performance:  Scaling

code by side length.
Double-precision code compares more 
favorably to single-precision code for these 
runs
Even in 3D, when there is more computational 
noise per timestep, properly saturating the 
GPU can contribute markedly to performance
The following are two graphs of 1:1:1 and 1:2:2 
GFLOP/s performance, then a third graph of 
wall-clock time per timestep*gridpoint



Performance:  Scaling SP



Performance: Scaling DP



Performance: Scaling DP



Outline

Model
Implementation
Performance
Analysis



Analysis: 2D

Flow-reversal at high Ra
Characterization and enumeration of these 
reversals is a necessary next-step in our analysis

Appropriate relationship with the Nusselt and 
Rayleigh numbers
Increased Rayleigh number relates to a 
general increase in Nusselt number, indicating 
more turbulent flow





Analysis: 2D
Also predictably, perturbing Ra mid-run raises 
the mean value of the Nusselt number

Ra changed from 3x1010

To 6x1010

Nu as a Function of TimeNu

Timestep



Analysis:  3D

Agreement in Nu with Zhong(2005)
Quasi-stable at Ra=106, 107 

Following is a picture from early on in the 





Analysis

3D Ra=106,107 runs quickly achieve a quasi-
stability, as shown in the next slide
This can be overcome by utilizing more GPU





Performance:  2D SPvsDP

trajectories in both single- and double-precision 
2D runs.  The following image is at a low 
timestep, at which point the trajectories have 
obviously diverged.

Non-dimensional times at this point agree this 
divergence is not due to timestepping
Single-precision is on the top half of the slide

Both runs at Ra=109





Analysis:  2D SPvsDP

Despite this, a surprising amount of agreement 
in various structures that arise

Number of plumes
Mean temperature
Max x- and z- speed
To check:  number of flow-reversals



Analysis: Future

With 360 GPU, we can do 3000x3000x1500
High Ra, more efficient GEMM, faster speed

3 GPU to explore 3D flow-reversal
Wavelet analysis on vorticity field
Visualize more fields (velocity, vorticity, etc)

Implement on CPU with ATLAS, MKL, or other 
BLAS



Thank you

Many videos are available at
www.youtube.com/sanc0174

Please send comments and questions to
sanc0174@umn.edu


